博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
[机器学习笔记] Python 绘制ROC曲线的例子
阅读量:4041 次
发布时间:2019-05-24

本文共 2819 字,大约阅读时间需要 9 分钟。

Python 绘制ROC曲线的例子

ROC的全称是“受试者工作特征”(Receiver Operating Characteristic)曲线。

根据学习器的预测结果对样例进行排序,按此顺序逐个把样本作为正例进行预测,每次计算出两个重要量的值(TPR、FPR),分别以它们为横、纵坐标作图。与PR曲线使用查准率、查全率为纵、横不同,ROC 曲线的纵轴是“真正例率”(True Positive Rate,TTR),横轴是“假正例率”(False Positive Rate,FPR)。

如图所示:

下面使用Python来作出该图:

# -*- coding: utf-8 -*-"""Created on Tue Mar 24 19:04:21 2020@author: Bean029"""import numpy as npimport matplotlib.pyplot as pltfrom itertools import cyclefrom sklearn import svm, datasetsfrom sklearn.metrics import roc_curve, aucfrom sklearn.model_selection import train_test_splitfrom sklearn.preprocessing import label_binarizefrom sklearn.multiclass import OneVsRestClassifierfrom scipy import interpfrom sklearn.metrics import roc_auc_score# Import some data to play withiris = datasets.load_iris()X = iris.datay = iris.target# Binarize the outputy = label_binarize(y, classes=[0, 1, 2])n_classes = y.shape[1]# Add noisy features to make the problem harderrandom_state = np.random.RandomState(0)n_samples, n_features = X.shapeX = np.c_[X, random_state.randn(n_samples, 200 * n_features)]# shuffle and split training and test setsX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5,                                                    random_state=0)# Learn to predict each class against the otherclassifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True,                                 random_state=random_state))y_score = classifier.fit(X_train, y_train).decision_function(X_test)# Compute ROC curve and ROC area for each classfpr = dict()tpr = dict()roc_auc = dict()for i in range(n_classes):    fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])    roc_auc[i] = auc(fpr[i], tpr[i])# Compute micro-average ROC curve and ROC areafpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel())roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])plt.figure()lw = 2plt.plot(fpr[2], tpr[2], color='darkorange',         lw=lw, label='ROC curve (area = %0.2f)' % roc_auc[2])plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')plt.xlim([0.0, 1.0])plt.ylim([0.0, 1.05])plt.xlabel('False Positive Rate')plt.ylabel('True Positive Rate')plt.title('Receiver operating characteristic example')plt.legend(loc="lower right")plt.show()

ROC曲线与PR曲线的取舍

相对来讲ROC曲线会稳定很多,在正负样本量都足够的情况下,ROC曲线足够反映模型的判断能力。因此,对于同一模型,PRC和ROC曲线都可以说明一定的问题,而且二者有一定的相关性,如果想评测模型效果,也可以把两条曲线都画出来综合评价。对于有监督的二分类问题,在正负样本都足够的情况下,可以直接用ROC曲线、AUC、KS评价模型效果。在确定阈值过程中,可以根据Precision、Recall或者F1来评价模型的分类效果。对于多分类问题,可以对每一类分别计算Precision、Recall和F1,综合作为模型评价指标。

ROC曲线下的面积,介于0.1和1之间,作为数值可以直观的评价分类器的好坏,值越大越好。

ROC曲线的特征是Y轴上的真阳性率和X轴上的假阳性率。

这意味着图的左上角是“理想”点——假阳性率为0,真阳性率为1。这不是很现实,但它确实意味着曲线下较大的面积(AUC)通常更好。

ROC曲线的“陡峭度”也很重要,因为最大化真阳性率同时最小化假阳性率是理想的。

ROC曲线通常用于二值分类以研究分类器的输出。为了将ROC曲线和ROC区域扩展到多标签分类中,需要对输出进行二值化。每个标签可以绘制一条ROC曲线,但也可以通过将标签指示符矩阵的每个元素视为二进制预测(微观平均)来绘制ROC曲线。

 

转载地址:http://wpvdi.baihongyu.com/

你可能感兴趣的文章
iOS app之间的跳转以及传参数
查看>>
iOS __block和__weak的区别
查看>>
Android(三)数据存储之XML解析技术
查看>>
Spring JTA应用之JOTM配置
查看>>
spring JdbcTemplate 的若干问题
查看>>
Servlet和JSP的线程安全问题
查看>>
GBK编码下jQuery Ajax中文乱码终极暴力解决方案
查看>>
Oracle 物化视图
查看>>
PHP那点小事--三元运算符
查看>>
解决国内NPM安装依赖速度慢问题
查看>>
Brackets安装及常用插件安装
查看>>
Centos 7(Linux)环境下安装PHP(编译添加)相应动态扩展模块so(以openssl.so为例)
查看>>
fastcgi_param 详解
查看>>
Nginx配置文件(nginx.conf)配置详解
查看>>
标记一下
查看>>
IP报文格式学习笔记
查看>>
autohotkey快捷键显示隐藏文件和文件扩展名
查看>>
Linux中的进程
查看>>
学习python(1)——环境与常识
查看>>
学习设计模式(3)——单例模式和类的成员函数中的静态变量的作用域
查看>>